FIE MiNi Review:从海水到氢气——直接光催化水蒸气分解的装置设计和系统集成综述

[日期:2024-04-16] 作者:化学组 次浏览 [字体: ]

研究背景及意义

太阳能驱动的分解水制氢技术被视为解决全球能源危机和推动工业脱碳的新兴方案。与纯水相比,海水即使在中东等干旱地区也广泛可用。若能有效利用太阳能,从海水中产生的氢气将成为一种丰富的可再生能源。然而,海水中含有的多种离子对直接电解海水提出了重大挑战,例如,在阳极发生的与氯相关的竞争反应。通过结合海水净化系统和传统催化剂/电解槽,可以解决这些问题,但这可能会使系统更加复杂。因此,许多研究致力于通过开发新型材料和系统集成技术来简化该过程,旨在直接利用海水作为太阳能驱动制氢的原料。迄今为止,已有几种方法被证明是可行的,它们能够利用太阳光从海水中产生氢气。如图1所示,这些方法主要分为两大类:直接海水分解(上方虚线框内)和间接海水分解(下方虚线框内)。直接海水分解依赖于新型光/电催化材料,这些材料能在海水中存在的离子条件下工作,并通过太阳能直接驱动海水分解系统,例如光催化、光伏电解(PV-E)和光电化学电池。直接光催化海水分解面临的主要挑战之一是缺乏合适的光催化剂,这在海水的复杂成分下限制了其性能。此外,直接海水分解还存在其他问题,比如,在高产率下光催化剂上产生的H2/O2气泡可能会导致光散射,这也减缓了其在工业上的应用。

图1 直接或间接海水制氢的不同方法。

间接气相海水光催化系统由集成的光热-光催化组件组成。系统中海水-蒸汽-氢气的传输过程和不同组件的转化功能,通过多层设计在图2中展示。在系统的底层,部分阳光到达光热组件并被转化为热量,用于海水的蒸发。同时部分热量也会散失到水和环境中,造成热损失。在其上方,由光热层产生的水蒸气被光催化组件捕获,并在阳光照射下分解产生氢气和氧气。

图2 集成光热-光催化水蒸气分解系统的关键过程。

主要研究内容

一、影响制氢参数

研究发现,提高温度有利于水相光催化反应,但对气相反应却有相反效果。同时,更高的蒸汽压力和蒸汽进料速度分别有助于加速水分解反应和提高制氢速率。有效捕获和转移光催化产生的氧气也能显著提高产氢量。此外,光强度与蒸汽生成和制氢速率之间存在直接的线性关系,因此太阳能密度是设计太阳能驱动制氢系统时的重要设计参数。

二、设计策略

太阳能水蒸发(SVG)面临着太阳能密度和能量通量不匹配的挑战,需要主动提高蒸汽的压力和温度。光学浓缩和热浓缩是两种主要的浓缩方法,光学浓缩通过聚焦太阳辐射来提高蒸汽生成的温度和热通量,而热学浓缩则通过局部提高蒸汽温度和热通量来实现。在SVG设备中,水供应路径需要与水分解速率匹配,因此需要减少水供应率以增强表面的无盐蒸发。为此,提出了背向扩散、直接阻塞盐和无接触蒸发等多种设计和技术。同时,研究显示了一些新型催化剂对光催化制氢的潜力,尽管太阳能转换效率(STH)仍然需要提高。

三、集成系统:实验室规模的原型和工业级的实施

实验室已成功演示了一种光热-光催化系统,能够从海水中制取氢气。该系统通过集成光热和光催化过程,可以在自然阳光下实现稳定的制氢。尽管工业规模的应用受到制造方法和设备尺寸等因素的限制,但浮动无源SVG设备等小规模系统已经开始实现分布式制氢。

原文信息

From seawater to hydrogen via direct photocatalytic vapor splitting: A review on device design and system integration

Hongxia Li1, Khaja Wahab Ahmed2, Mohamed A. Abdelsalam3, Michael Fowler2, Xiao-Yu Wu4

Author information:

1. Technology Innovation Institute, Masdar City, Abu Dhabi 9639, United Arab Emirates

2. Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada

3. Department of Mechanical and Nuclear Engineering, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates

4. Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada

Abstract:

Solar-driven hydrogen production from seawater attracts great interest for its emerging role in decarbonizing global energy consumption. Given the complexity of natural seawater content, photocatalytic vapor splitting offers a low-cost and safe solution, but with a very low solar-to-hydrogen conversion efficiency. With a focus on cutting-edge photothermal–photocatalytic device design and system integration, the recent research advances on vapor splitting from seawater, as well as industrial implementations in the past decades were reviewed. In addition, the design strategies of the key processes were reviewed, including vapor temperature and pressure control during solar thermal vapor generation from seawater, capillary-fed vaporization with salt repellent, and direct photocatalytic vapor splitting for hydrogen production. Moreover, the existing laboratory-scale and industrial-scale systems, and the integration principles and remaining challenges in the future seawater-to-hydrogen technology were discussed.

Keywords:

seawater, hydrogen, photocatalytic, vapor splitting, solar-driven